

NX-2127, a Degrader of BTK and IMiD Neosubstrates, for the Treatment of B-Cell Malignancies

Presenter: Daniel Robbins, Ph. D.

drobbins@nurixtx.com

All authors of this presentation are current or former employees and shareholders of Nurix Therapeutics.

NX-2127 has a dual degradation mechanism of action for two clinically validated targets

- BTK is a tyrosine kinase involved in B cell development, differentiation and signaling
- BTK inhibitors are approved for treatment of B cell malignancies
- Mutations to BTK have conferred resistance to approved agents indicating an area of unmet medical need
- IMiD therapies have shown efficacy in some aggressive B-cell malignancies
- The dual action of BTK degradation and IMiD activity may provide a unique treatment strategy for relapsed/refractory B-cell malignancies

Catalytic ubiquitination Catalytic ubiquitination Α ^{-gradation} Proteasome CRBN **BTK** Ikaros Aiolos **CRBN CRBN** ubiquitin Proteasome BTK ligase complex **CRBN** ubiquitin ligase complex Ubiquitin BTK Degradation NX-2127 (BTK binder)

NX-2127 catalyzes BTK degradation and antiproliferative activity in cancer cell lines

C Anti-proliferative activity in C481S TMD8 cells

- (A) NX-2127 catalyzes potent degradation of BTK in DLBCL cell lines (TMD8), including cells with the ibrutinib-resistance mutation BTK^{C481S}
- (B) NX-2127 catalyzes BTK degradation in Rec-1 and Mino mantle cell lymphoma cell lines
- (C) NX-2127 potently blocks cell proliferation of BTK^{C481S} TMD8 cells relative to ibrutinib

NX-2127 has minimal *in vitro* effects on platelet aggregation

• NX-2127 does not show significant inhibition of platelet aggregation in an *in vitro* platelet aggregation assay

NX-2127 catalyzes Aiolos degradation and IL-2 production similar to IMiD drugs

IMiD Activity: Aiolos Degradation in Naïve Human T Cells

Compound Concentration (µM)

• NX-2127 degrades Aiolos with similar potency to that of pomalidomide and lenalidomide

IL-2 Secretion 8000-**Cells (pg/ml)** 4000 IL-2 Secretion from NX-2127 Lenalidomide X Pomalidomide ⊢ Human 2000 0,00001 0,0001 0,0001 0.001 0.01 0. 0

IMiD Activity: T Cell Activation and

Compound Concentration (µM)

• NX-2127 exhibits IMiD-like activity by activation and IL-2 production following CD3/CD28 stimulation

Oral Administration of NX-2127 Demonstrates Cancer Growth Inhibition in Mouse Xenograft Tumor Model

Tumor Growth Inhibition in Xenograft Model of Wild Type Lymphoma Tumor Growth Inhibition in Xenograft Model of Mutant Ibrutinib-Resistant Lymphoma

• NX-2127 demonstrates comparable tumor growth inhibition to ibrutinib in a xenograft mouse model containing tumors with a wild type BTK

 NX-2127 shows more potent tumor growth inhibition compared to ibrutinib in a xenograft mouse model containing tumors with the most common human resistance mutation (C481S) in BTK target protein

Oral Dosing of NX-2127 Degrades BTK in Cynomolgus Monkey

- NX-2127 induces significant degradation of BTK in 4 hours and more than 90% degradation through 24 hours post dose
- Once daily, oral dosing of NX-2127 maintains suppression of BTK protein levels throughout the 19-day duration of the study (NX-2127 PK $t_{1/2}$ = 5.4 h)

Summary and Conclusions

- NX-2127 catalyzes potent BTK degradation *in vitro* and results in anti-proliferative effects in human lymphoma cell lines
- The IMiD activity of NX-2127 is similar to that of IMiD drugs pomalidomide and lenalidomide and results in T-cell activation
- NX-2127 demonstrates potent BTK degradation *in vivo* upon oral dosing in cynomolgus monkey and displays anti-tumor effects in both wild-type and C481S mutant mouse xenograft tumor models
- NX-2127 combines BTK degradation with IMiD activity to provide an attractive therapeutic strategy in the setting of resistance mutations and an expanded set of B-cell malignancies

Acknowledgements

Biology & Lead Discovery

Jordan Ye Mark Noviski Austin Tenn-McClellan Szerenke Kiss von Soly Jennifa Gosling Karl Doerner Stephanie Yung Kathleen Boyle Diana Muñoz Steve Basham

Preclinical Pharmacology

May Tan Anna Kolobova Luz Perez Jennifer Tung Ryan Rountree Jennie Stokes Sasha Borodovsky

d Discovery Chemistry

Daisuke Kato Zef Konst Jose Leighton Oliver McConnell Joel McIntosh Ge Peng Josh Taygerly Jeffrey Wu Jeff Mihalic Christoph Zapf

Development

Timothy Ingallinera Janine Powers Jenny McKinnell Dane Karr

Drug Discovery Technologies

Eileen Ambing Andrew Sawayama Naimee Mehta Herman Yuen Paul Novick Jose Santos Dahlia Weiss Mario Cardozo Matt Clifton Stefan Gajewski

Collaborators

NIH NHLBI Adrian Wiestner Sarah Herman Hailey Harris Deyi Zhang Tokyo Medical and Dental University (TMD8 cells)

Project Leadership & Project Management Aileen Kelly Dan Robbins Elsa Tretter

Nurix Leadership

Arthur Sands Pierre Beaurang Robert Brown Hans Van Houte Cristiana Guiducci Gwenn Hansen Howard Simon Jason Kantor Chris Ring Jean Chang

