A First-in-Human Phase 1 Trial of NX-1607, a First-in-Class Oral **CBL-B Inhibitor, in Patients with Advanced Solid Tumors**

Adam Sharp,1 Anja Williams,2 Sarah Blagden,3 Ruth Plummer,4 Daniel Hochhauser,5 Matthew G. Krebs,6 Simon Pacey,7 Jeff Evans,8 Sarah Whelan,9 Srinand Nandakumar,⁹ Seema Rogers,⁹ Katherine L. Jameson,⁹ Frank G. Basile,⁹ Johann de Bono,¹ and Hendrik-Tobias Arkenau²

¹The Institute of Cancer Research, and the Royal Marsden Hospital, London, UK; ²Sarah Cannon Research Institute (SCRI), London, UK; ³University of Oxford, Oxford, UK; ⁴Northern Centre for Care, Newcastle upon Tyne, UK; ⁵University College London (UCL), London, UK; ⁶The Christie NHS Foundation Trust, University of Manchester, Manchester, UK; ⁷Cancer Research UK, Cambridge Centre & Department of Oncology, University of Cambridge, and Department of Oncology, Addenbrooke's Hospital, Cambridge, UK; ⁸University of Glasgow, Glasgow, UK; ⁹Nurix Therapeutics, Inc., San Francisco, CA, USA

Background

- The proto-oncogene CBL-B encodes an E3 ubiquitin ligase expressed in immune cell lineages, that regulates T-cell activation. It imposes the requirement for co-stimulation to mount a productive immune response upon T-cell receptor engagement.
- CBL-B-deficient mice demonstrate enhanced signal-dependent T-cell activation and robust T-cell dependent anti-tumor activity.^{1,2} In addition, CD4+ T-cells deficient in CBL-B demonstrate resistance to inhibition by regulatory T-cells.3
- Inhibiting CBL-B with a small molecule is expected to enhance T-cell response, increase response to sub-optimal priming, and restore response in exhausted T-cells. Thus, CBL-B is a promising immuneoncology target and may overcome challenges seen with other T-cell-directed therapies.
- NX-1607 is an oral small-molecule inhibitor of CBL-B that has demonstrated anti-tumor activity and long-term survival in murine models as both a single agent and in combination with PD-1 antibodies.⁴ Further, NX-1607 elicits dose-dependent increases in cytokine secretion and proliferation in T-cell receptor-stimulated primary human T-cells with enhanced tumor antigen-specific T-cell and NK cell antitumor responses.^{4,5} Thus, NX-1607 may be effective as a single agent or it may significantly enhance efficacy of other anti-tumor agents.

NX-1607: Proposed mechanism of action

Methods

- NX-1607-101 is a first-in-human, two-part, multicenter, open-label. Phase 1 trial evaluating NX-1607 in patients with tumors that are checkpoint inhibitor-resistant, immune-excluded, or are poorly immunogenic:
- Phase 1a (dose escalation) will proceed using an accelerated modified Fibonacci dose escalation design that transitions to a standard 3 + 3 design based on protocol-specific criteria.
- Phase 1b (dose expansion) will use a Simon 2-stage design and include up to 8 expansion cohorts. NX-1607 will be given orally once daily at doses ranging from 5 to 100 mg during Phase 1a, and at the
- recommended Phase 1b dose during Phase 1b Eligible tumor types include platinum-resistant EOC, gastric cancer, HNSCC, metastatic melanoma NSCLC, mCRPC, MPM, TNBC, locally advanced or metastatic urothelial cancer, cervical cancer, MSS CRC, and DLBCL-RT.
- The main objectives are to establish the safety and tolerability of NX-1607, characterize PD/PK, and determine the recommended Phase 1b dose.

NX-1607-101: Study design

Study objectives and endpoints

Phase	Objectives	Endpoints
Primary (1a)	 Evaluate safety and tolerability Evaluate MTD and/or RP1bD 	 Incidence of TEAEs Incidence of irAEs Incidence of all deaths Changes from baseline in safety parameters Incidence of DLTs
Secondary (1a)	 Characterize PK profile Characterize PD profile Characterize PK/PD relationship Assess preliminary anti-tumor activity 	 NX-1607 PK parameters in plasma Changes from baseline in proximal biomarkers in circulating immune cells ORR per RECIST v1.1, or mRECIST for MPM, or PCWG3 for mCRPC DOR, DCR, PFS, OS
Primary (1b)	 Evaluate anti-tumor activity of NX-1607 at the RP1bD in expansion cohorts 	 ORR per RECIST v1.1, or mRECIST for MPM, or PCWG3 for mCRPC
Secondary (1b)	 Evaluate safety and tolerability Further evaluate preliminary anti-tumor activity Further characterize PK profile Further characterize PD profile Further characterize PK/PD relationship 	 Incidence of TEAEs Incidence of IrAEs Incidence of all deaths Incidence of all deaths Changes from baseline in safety parameters DOR, DCR, PFS, OS, time to progression mCRPC cohort only: rPFS, time to radiographic progression, time to PSA progression, time to skeletal event NX-1607 PK parameters in plasma Changes from baseline in proximal biomarkers in circulating immune cells Changes from baseline in distal biomarkers in the tumor micro-environment
Exploratory (1a, 1b)	Explore biomarkers of CBL-B inhibition and various mechanisms of response/ resistance	 CBL-B signaling pathway analysis which may include, but is not limited to, plasma cytokine levels, immunophenotyping, and gene expression changes, and mutation analysis

Evaluations

Efficacy

- A secondary objective in Phase 1a, and primary objective in Phase 1b, is to make a preliminary assessment of the efficacy of NX-1607 (i.e., anti-tumor activity of NX-1607).
- Tumor response will be assessed based on RECIST v1.1, modified RECIST for MPM, PCWG3 for mCRPC, or Revised Response Criteria for Malignant Lymphoma for DLBCL-RT.
- Disease assessments will be performed at Screening, every 9 weeks (±7 days) (i.e., every 3 cycles)
- for patients who remain on treatment through Week 27 (end of Cycle 9) and every 12 weeks (±7 days) (i.e., every 4 cycles) thereafter and at time of clinical suspicion of disease progression.
- Safety
 - Safety will be determined from evaluation of DLTs, AEs, clinical laboratory assessments, vital signs assessments, physical examinations, and electrocardiograms.
 - At the occurrence of a significant safety event (e.g., DLT, study drug-related serious AEs, or study drug-related Grade 3 or greater AEs), PD and PK blood samples should be collected when possible.
 - Clinical examinations, including vital signs, will be performed at Screening and at every clinic visit before administration of NX-1607
 - All patients will be evaluable for safety

Sample size and statistics

Phase 1a dose escalation

6–60 evaluable patients, dependent on the number of dose levels investigated.

Phase 1b dose expansion

- Up to approximately 276 evaluable patients in up to 8 expansion cohorts:
- Stage 1: 112 evaluable patients in first 6 cohorts (metastatic melanoma, platinum-resistant EOC, gastric cancer, HNSCC, NSCLC, mCRPC). Up to an additional 108 evaluable patients if all cohorts continue to Stage 2.
- Mixed solid tumor cohort: 40 evaluable patients. Tumors include MPM, TNBC, urothelial cancer, cervical cancer, or MSS CRC
- **DLBCL-RT cohort:** 16 evaluable patients

Current status

- Up to 336 patients will be enrolled at approximately 20 sites in the UK and US and treated until disease progression or unacceptable toxicity
- Dose escalation is ongoing

Key eligibility criteria

Overview of inclusion criteria

Phase 1a and Phase 1b

- Age ≥18 years
- Histological or cytological evidence of malignancy
- Measurable disease per disease-specific response criteria
- · Metastatic or unresectable disease, and received or are not candidates for standard treatment options
- ECOG performance status of 0 or 1
- · Prior treatment with immune checkpoint inhibitors or CAR-T cells with washout is permitted
- · Minimum of 3 weeks or 5 half-lives since last dose of systemic cancer therapy (unless otherwise specified) or minimum of 2 weeks since last radiotherapy, or minimum of 6 weeks since last systemic therapy with nitrosoureas, antibody-drug conjugate, or radio-immuno-conjugate therapy.
- · Adequate organ/bone marrow function, as defined per protocol laboratory parameters

Phase 1a only

· Advanced or refractory solid tumors in phase 1a target indication(s) with protocol-specified prior lines of therapy

Phase 1b only

- · Advanced or refractory malignancy, per the intended expansion cohort (i.e., phase 1b target indications)
- · Accessible tumor for biopsy and must consent to on-study biopsies

- Clinical trial information: NCT05107674
- Study contact: nx1607101@nurixtx.com

Abbreviations

- AEs, adverse events CAR-T, Chimeric Antigen Receptor T-cell CBL-B, Casitas B-lineage lymphoma B CD, cluster of differentiation DCR, disease control rate DLBCL-RT, diffuse large B-cell lymphoma with Richter transformation DLTs, dose-limiting toxicities DOR, duration of response ECOG, Eastern Cooperative Oncology Group EOC, epithelial ovarian cancer HNSCC, head and neck squamous cell carcinoma IL-2, interleukin-2 irAEs, immune-related adverse events mCRPC, metastatic castration-resistant prostate cancer MHC, major histocompatibility complex malignant pleural mesothelioma MSS CRC, microsatellite stable colorectal cancer
- MTD, maximum tolerated dose NSCLC, non-small cell lung cancer ORR, objective response rate OS, overall survival PCWG3, Prostate Cancer Working Group 3 PD, pharmacodynamics PD-1, programmed cell death protein-1 (r)PFS, (radiographic) progression-free survival PSA, prostate-specific antigen (m)RECIST, (modified) Response Evaluation Criteria in Solid Turnours RP1bD, recommended phase 1b dose TCR, T-cell receptor TEAEs trademated TEAEs, treatment-emergent adverse events TNBC, triple-negative breast cancer

References

- 1. Li X, et al. Immunol Rev. 2019;291:123-133
- 2 Paolino M. et al., I. Immunol. 2011:186:2138-2147
- 3. Han S, et al. Oncoimmunology. 2020;9:1737368.
- 4. Rountree R, et al. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia, PA: Cancer Res 2021;81(13_Suppl):abstr 1595.
- 5. Nurix Therapeutics. Inhibitors of the E3 ubiquitin ligase CBL-B promote potent T and NK cell mediated anti-tumor response. 17th Annual Drug Discovery Chemistry 2022 Apr 19. San Diego, CA.

Acknowledgements

- NX-1607-101 was sponsored by Nurix Therapeutics, Inc.
- Nurix Therapeutics, Inc. also funded the editorial support provided by Miller Medical Communications

