Discovery and Optimization of CBL-B Inhibitors

NX-1607

Discovery On Target
Boston, MA
October 18, 2022
This presentation contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. When or if used in this presentation, the words “anticipate,” “believe,” “could,” “estimate,” “expect,” “intend,” “may,” “outlook,” “plan,” “predict,” “should,” “will,” and similar expressions and their variants, as they relate to Nurix Therapeutics, Inc. (“Nurix”, the “Company,” “we,” “us” or “our”), may identify forward-looking statements. All statements that reflect Nurix’s expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements regarding our future financial or business plans; our future performance, prospects and strategies; future conditions, trends, and other financial and business matters; our current and prospective drug candidates; the planned timing and conduct of the clinical trial programs for our drug candidates; the planned timing for the provision of clinical updates and initial findings from our clinical studies; the potential advantages of our DELigase™ platform and drug candidates; the extent to which our scientific approach and DELigase™ platform may potentially address a broad range of diseases; the extent animal model data predicts human efficacy; and the timing and success of the development and commercialization of our current and anticipated drug candidates. Forward-looking statements reflect Nurix’s current beliefs, expectations, and assumptions. Although Nurix believes the expectations and assumptions reflected in such forward-looking statements are reasonable, Nurix can give no assurance that they will prove to be correct. Forward-looking statements are not guarantees of future performance and are subject to risks, uncertainties and changes in circumstances that are difficult to predict, which could cause Nurix’s actual activities and results to differ materially from those expressed in any forward-looking statement. Such risks and uncertainties include, but are not limited to: (i) risks and uncertainties related to Nurix’s ability to advance its drug candidates, obtain regulatory approval of and ultimately commercialize its drug candidates; (ii) the timing and results of clinical trials; (iii) Nurix’s ability to fund development activities and achieve development goals; (iv) the impact of the COVID-19 pandemic on Nurix’s business, clinical trials, financial condition, liquidity and results of operations; (v) Nurix’s ability to protect intellectual property and (vi) other risks and uncertainties described under the heading “Risk Factors” in Nurix’s Quarterly Report on Form 10-Q for the fiscal quarter ended August 31, 2022, and other SEC filings. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. The statements in this presentation speak only as of the date of this presentation, even if subsequently made available by Nurix on its website or otherwise. Nurix disclaims any intention or obligation to update publicly any forward-looking statements, whether in response to new information, future events, or otherwise, except as required by applicable law.

Important Notice and Disclaimers

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company’s own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal estimates and research are reliable, such estimates and research have not been verified by any independent source.
Nurix’s DELigase Protein Modulation Discovery Platform

DEL Discovery

> 5 billion drug-like compounds that can be easily screened against hundreds of proteins to identify starting points therapeutic discovery

Rational and Empirical Chemistry

Structure Based Drug Design combined with chemistry automation enables broad exploration of lead-like chemical space for each program

Direct-to-Cell Biology Capabilities

High throughput cellular assays monitor protein levels and biological phenotypes to assess impact on biology

Scaled Screening for in vivo exposure

Capacity to screen for ideal in vivo drug exposure profile and assess impact on disease biology
Nurix Is Advancing Four Wholly Owned Clinical Programs with a Deep Pipeline of Proprietary and Partnered Novel Targets

<table>
<thead>
<tr>
<th>MOA</th>
<th>Drug Program</th>
<th>Target/ Delivery</th>
<th>Therapeutic Area</th>
<th>Pre-Clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPD</td>
<td>NX-2127</td>
<td>BTK-IKZF</td>
<td>B-Cell Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degrader</td>
<td>Oral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPD</td>
<td>NX-5948</td>
<td>BTK</td>
<td>B-Cell Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degrader</td>
<td>Oral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPE</td>
<td>NX-1607</td>
<td>CBL-B</td>
<td>Immuno-Oncology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhibitor</td>
<td>Oral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPD</td>
<td>DeTIL-0255</td>
<td>Adoptive Cell Therapy</td>
<td>Gynecologic Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cell Therapy</td>
<td>Ex vivo CBL-B Inhibition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM</td>
<td>Wholly owned</td>
<td>5 targets</td>
<td>Multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPD</td>
<td>Gilead Sciences</td>
<td>5 targets</td>
<td>Multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPD</td>
<td>Sanofi</td>
<td>5 targets</td>
<td>Multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CBL-B is a Modulator of Immune Cell Activation

- CBL-B is an E3 ubiquitin ligase highly expressed in cells of the immune system

- CBL-B regulates T, B, and NK cell activation

- Blocking CBL-B removes a brake on the immune system

- *cbl-b* deficient mice demonstrate robust T cell and NK cell-mediated antitumor immunity

Synergy with anti-PD-1

- IL-2 production
- Proliferation
- Central memory phenotype
- Anti-tumor activity
- Threshold of activation
- T cell exhaustion

CBL-B inhibition
CBL-B is a Modulator of Immune Cell Activation

Inactivation or deletion of CBL-B results in hyperactive T cells and inhibition of tumor growth.

IL-2 secretion in KO and ligase inactive T cells *ex vivo*

Paolino et. al. *J. Immunology*, 2011

Ligase-dead or KO exhibit enhanced and equivalent response to either single- or double stimulation

Ligase-inactive *cbl-b* knock-in mice inhibit tumor growth (TC-1 syngeneic model).

Nurix Data
Inactive CBL-B is Autoinhibited

- When Y363 of CBL-B is not phosphorylated, the helix of the LHR domain packs against the TKB domain
- Incapable of binding Ub-E2
- Phosphorylation of Y363 requires dissociation of LHR-RING from TKB

Active CBL-B Binds Ub-loaded E2 Ligases

"Closed-state" (inactive)

"Open-state" (active, binds E2-Ub)

Phosphorylation

CBL-B

TKB

RING

LHR

36 427 982
Multiple Lead-Finding Approaches Afforded CBL-B Binders

- All three screening techniques afforded validated binders, confirmed by X-ray crystallography.

<table>
<thead>
<tr>
<th></th>
<th>HTS</th>
<th>DEL</th>
<th>Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lib size</td>
<td>300K</td>
<td>1X10^9</td>
<td>1600</td>
</tr>
<tr>
<td># of Series</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hit Affinity</td>
<td>28 µM</td>
<td>2.4 µM</td>
<td>1800 µM</td>
</tr>
<tr>
<td>Hit mwt</td>
<td>338</td>
<td>537</td>
<td>211</td>
</tr>
<tr>
<td>Hit LE</td>
<td>0.27</td>
<td>0.22</td>
<td>0.33</td>
</tr>
</tbody>
</table>
CBL-B HTS Triage Revealed a Singleton Hit

104 hits from Closed State HTS
 Next: Tested from purchased powders

~90% confirmed from powders
 Next: Hits re-tested from purified compounds

< 15 hits repeated from purified compounds
 Next: Hits (re)tested in a variety of assays

- Solubility, Biophysical assay (SPR), FRET Artifact assay, Gel-based CBL-B Phosphorylation assay

- Preliminary SAR and X-ray crystallography

Identified singleton hit, NRX-1
HTS Reveals a Singleton Hit

NRX-1 (racemic)

\[\text{mwt} = 338 \]
\[K_{\text{sol}} = 280 \mu M \]
\[\text{cLogP} = 3.46 \]
\[\text{PSA} = 60 \]

\[\text{IC}_{50} \text{: } 28 \mu M \]

E2 binding assay and counter assays to examine Src activity or FRET artifacts indicate that NRX-1 is a CBL-B inhibitor

- SPR confirms NRX-1 binding affinity and stoichiometry to CBL-B
- SPR binding affinity and biochemical potency in close agreement
NRX-3 is a Specific Inhibitor of CBL-B

NRX-1
HTS Screening hit

NRX-2
Chiral SFC

NRX-3
Resolved Screening hit
E2-Ub: IC$_{50}$ = 12 µM
mwt = 338; LE = 0.29

E2-Ub binding

SPR

K$_D$: 16 µM
NRX-3 is an Intramolecular Glue

1. Kinase
2. E2/substrate

Phosphorylation locks CBL-B in the **ACTIVE** Conformation

Immune Response
NRX-3 is an Intramolecular Glue

1. Kinase

NRX-3 acts as an intramolecular glue forcing CBL-B in its folded INACTIVE state

Y363 HELIX RING

Closed State

TKB

Opened State

TKB

2. E2/substrate

Phosphorylation locks CBL-B in the ACTIVE Conformation

E2

pY363

Substrate protein

Immune Response

14
Crystal Structure Confirms Binding Mode as Intramolecular Glue

NRX-3 binds to closed-state CBL-B and prevents phosphorylation
Early SAR: Focus on Affinity and Properties

<table>
<thead>
<tr>
<th></th>
<th>NRX-3</th>
<th>NRX-4</th>
<th>NRX-5</th>
<th>NRX-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2-Ub: IC₅₀ (µM)</td>
<td>12</td>
<td>0.23</td>
<td>0.092</td>
<td>0.088</td>
</tr>
<tr>
<td>Ligand Efficiency</td>
<td>0.29</td>
<td>0.33</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>Cellular Substrate Ub IC₅₀ (µM)</td>
<td>7</td>
<td>3</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Microsomes h/m Clₘᵢₙ (mL/min/kg)</td>
<td>20/360</td>
<td>-/500</td>
<td>30/73</td>
<td></td>
</tr>
<tr>
<td>Plasma stability m/r T₁/₂ (min)</td>
<td>-</td>
<td>140/-</td>
<td>280/-</td>
<td></td>
</tr>
<tr>
<td>Papp MDCK (MDR1) A→B/B→A ratio</td>
<td>26/1</td>
<td>33/1</td>
<td>9/6</td>
<td></td>
</tr>
<tr>
<td>Ksol (µM)</td>
<td>250</td>
<td>300</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>LogD₇.₄</td>
<td>2.6</td>
<td>2.3</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>
Early SAR: Focus on Affinity and Properties

<table>
<thead>
<tr>
<th></th>
<th>NRX-6</th>
<th>NRX-7</th>
<th>NRX-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2-Ub: IC\textsubscript{50} (\mu M)</td>
<td>0.088</td>
<td>0.038</td>
<td>0.021</td>
</tr>
<tr>
<td>Ligand Efficiency</td>
<td>0.37</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td>Cellular Substrate Ub IC\textsubscript{50} (\mu M)</td>
<td>1.7</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>Microsomes h/m Cl\textsubscript{int} (mL/min/kg)</td>
<td>30/73</td>
<td>-/67</td>
<td>7/26</td>
</tr>
<tr>
<td>Plasma stability m/r T\textsubscript{1/2} (min)</td>
<td>280/-</td>
<td>>1000/163</td>
<td>>1000/>1000</td>
</tr>
<tr>
<td>Papp MDCK (MDR1) A→B/B→A ratio</td>
<td>9/6</td>
<td>7/7</td>
<td>2/14</td>
</tr>
<tr>
<td>Ksol (\mu M)</td>
<td>270</td>
<td>260</td>
<td>300</td>
</tr>
<tr>
<td>LogD\textsubscript{7.4}</td>
<td>1.9</td>
<td>2.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>
The SAR for rat plasma stability was not predictable by chemists

First observed with low recovery in PPB assays
To assist with lead optimization, models were built based on the 104 experimental plasma stability data points available at the time.

Despite the low volume of data, both regression and classification models demonstrated high predictive power and provided key insights driving series progression.
NRX-8 Is a Specific Inhibitor of CBL-B

NRX-8 displays clean 1:1 binding stoichiometry with CBL-B and is clean in off-target screening.

CEREP Panel, <40% activity at 10 µM (N = 52)
NRX-8 Maintains Original Hit Binding Mode
NRX-8 Inhibits Substrate Ub and Stimulates IL-2 Induction

Substrate Ubiquitylation – BT20 cell line

-100 -50 0 % Ubiquitylation Activity

Log uM

-4 -3 -2 -1 0 1 2 3

Human T cell assay – IL-2 production

Fold change over CD3, CD28 alone

0 10 20 30 40

Log uM

-4 -3 -2 -1 0 1

2.5X

<table>
<thead>
<tr>
<th>Assay Description</th>
<th>NRX-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2 (2.5X over baseline response)</td>
<td>80 nM</td>
</tr>
<tr>
<td>Cellular Ubiquitylation of substrate (BT20 – MSD assay)</td>
<td>850 nM</td>
</tr>
</tbody>
</table>
Pharmacologic Inhibition of CBL-B Recapitulates Anti-Tumor Effects of Genetic Model of Ligase Inhibition

Ligase-inactive *cbl-b* knock-in mice inhibit tumor growth in TC1 Syngeneic Model

CT26 Syngeneic Model

- **Vehicle**
- **45 mpk BID**
- **90 mpk BID**
- **180 mpk BID**

Tumor volume mm3 (Mean±SEM)

Days post implant

Tumor volume mm3 (Mean±SEM)

Days

NRX-8

0 5 10 25 30
Over 10,000-fold Enzymatic Potency Improvement Achieved While Improving Molecular Properties

~10,000x potency improvement

Clinical candidate range
Single-Agent NX-1607 Induces Antitumor Response in Multiple Models

NX-1607

Reduced Tumor Volume

Colorectal

Day 25 Tumors

NS

\[p = 0.0063 \]

NX-1607

Prolonged Survival

Triple-Negative Breast

NX-1607 30 mg/kg day 7 to 46

\[p < 0.0001 \]

NX-1607

Reduced Tumor Volume

B Cell Lymphoma

NX-1607 30 mg/kg day 16 to 28

Shaded area indicates dosing period
NX-1607 and Anti-PD-1 Synergize to Enhance Anti-tumor Effects and Survival of Mice in Multiple Tumor Models

Colorectal (CT26) Long-Term Survival

Colorectal (MC38) Long-Term Survival

Triple-Negative Breast (4T1) Day 28 4T1 Lung Metastases

- Vehicle
- NX-1607
- anti-PD-1
- NX-1607+anti-PD-1

Shaded area indicates dosing period: NX-1607 (30 mg/kg, PO daily) and anti-PD-1 twice a week at 10 mg/kg dosing period
Summary

- CBL-B regulates T, B and NK cell activation
- Multiple screening approaches afforded validated binders to CBL-B
- Plasma instability may be an under-appreciated liability for amide-containing compounds
- Pharmacological inhibition of CBL-B recapitulates the anti-tumor effects of the genetic model of ligase inhibition
- NRX-8 specifically binds to CBL-B and 'glues' the protein in a closed state, preventing phosphorylation and E2-Ub binding
- Dosing of NRX-8 (45 mg/kg BID) inhibits tumor growth in mice
- Further optimization resulted in NX-1607 with sub-nM affinity and optimal in vivo anti-tumor activity
- Phase 1 clinical trial of NX-1607 in relapsed or refractory tumors is currently ongoing
Leader in Targeted Protein Modulation

Thank you