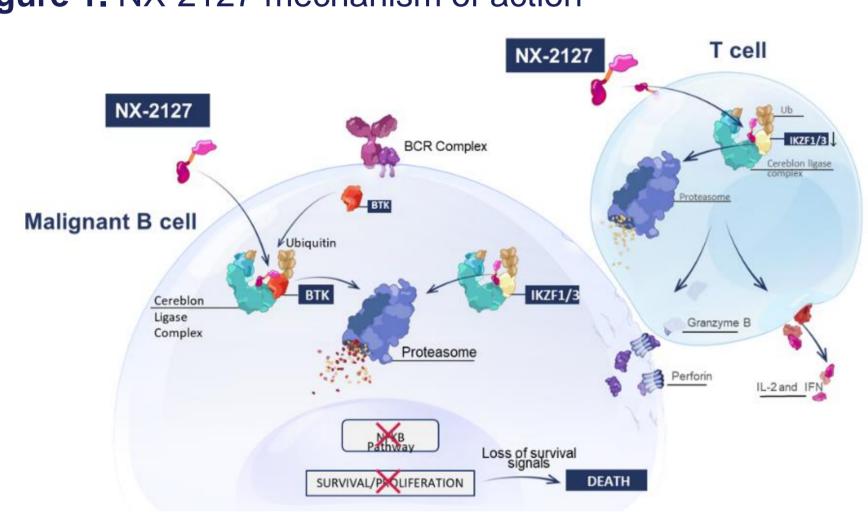
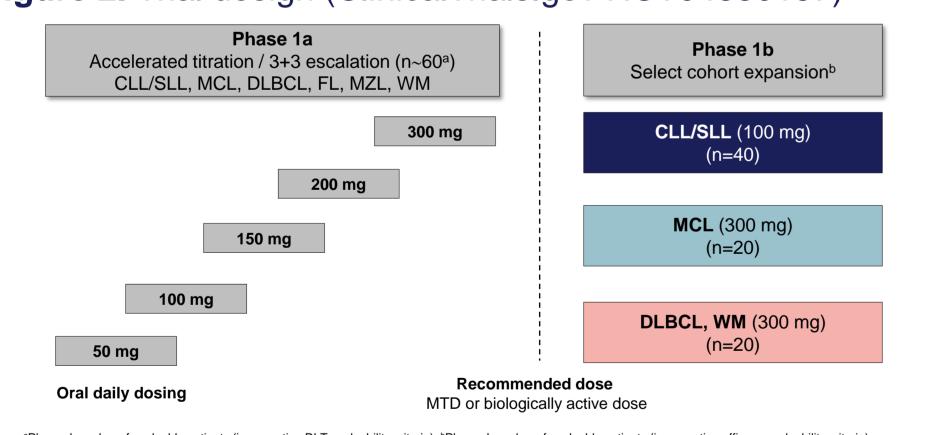
A First-in-Human Phase 1 Trial of NX-2127, a First-in-Class Bruton's Tyrosine Kinase Dual-Targeted Protein Degrader with Immunomodulatory Activity, in Patients with Relapsed/Refractory B-Cell Malignancies


Alexey Danilov¹, Michael Tees², Krish Patel³, William Wierda⁴, Manish R. Patel⁵, Ian Flinn⁶, Tahir Latif⁷, Weiyun Ai⁸, May Tan¹³, Daniel Chan¹³, Erin Meredith¹³, Adrian Wiestner¹⁰

¹City of Hope National Medical Center, Duarte, CA, USA; ⁴MD Anderson Cancer Institute, Center for Blood Disorders and Cellular Therapy, Seattle, WA, USA; ⁵Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA; ⁵Tennessee Oncology, Nashville, TN, USA; ⁵Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA; ⁵Tennessee Oncology, Nashville, TN, USA; ⁵Tennessee Cincinnati, OH, USA; 8 University of California San Francisco, San Francisco, CA, USA; 9 Memorial Sloan Kettering Cancer Center, New York, NY, USA; 10 National Heart, Lung, and Blood Institutes of Health, Salt Lake City, UT, USA; 12 University of Chicago, Chicago, Chicago, IL, USA; 13 Nurix Therapeutics, Inc., San Francisco, CA, USA; 14 University of Chicago, Chicago, Chicago, IL, USA; 15 Nurix Therapeutics, Inc., San Francisco, CA, USA; 16 USA; 17 University of Chicago, Chicago, IL, USA; 18 University of Chicago, IL, USA; 18 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Chicago, IL, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Utah Health, USA; 19 University of Utah Health, Salt Lake City, UT, USA; 19 University of Utah Health, UT, USA; 19 University of Utah Health, UT, USA; 19 University of Utah Health, UT, USA; 19 University of UT, USA; 19 Univers

Background

- Emerging resistance mutations to BTK inhibitors (BTKi) in CLL and NHL, and the related growth-promoting kinase-independent scaffolding function of BTK, present a need for improved or new approaches that address the shortcomings of existing BTKi.
- Additionally, preclinical and clinical data in NHL suggest that modulation of cereblon to degrade Ikaros family proteins may demonstrate synergy with BTK inhibition in providing a therapeutic effect.¹
- NX-2127 is an oral, first-in-class, dual-function, small-molecule degrader that combines BTK degradation with the immunomodulatory activity of a degrader for the transcription factor Ikaros (IKZF1/3, Figure 1).2


Figure 1. NX-2127 mechanism of action

- NX-2127 may exert superior anti-tumor activity compared with classical BTKi by overcoming BTK mutation-driven resistance to BTKi, eliminating BTK non-kinase function (e.g. scaffolding) and modulating immune response by regulating activity of Ikaros family transcription factors.
- NX-2127 is currently being evaluated in a Phase 1a/1b study in patients with advanced B-cell malignancies (NX-2127-001). Preliminary safety data across B-cell malignancies and efficacy in patients with CLL have been presented previously.^{3,4}
- Here we report updated safety and efficacy data from patients with NHL and CLL.

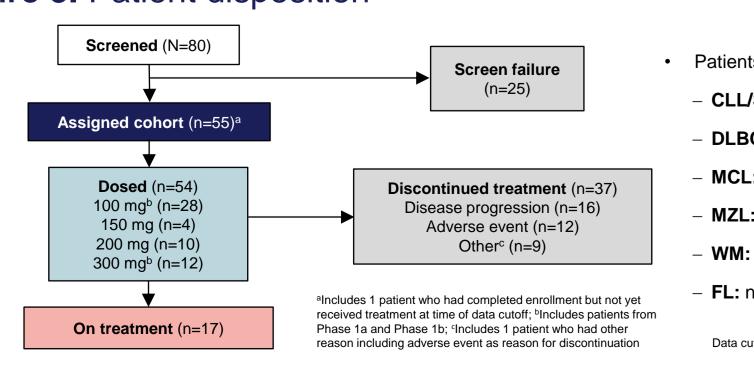

Methods

Figure 2. Trial design (ClinicalTrials.gov NCT04830137)

- ^aPlanned number of evaluable patients (i.e., meeting DLT evaluability criteria); ^bPlanned number of evaluable patients (i.e., meeting efficacy evaluability criteria) • NX-2127-001 is a first-in-human, Phase 1a (dose escalation) and Phase 1b (cohort expansion) study designed to evaluate the safety, tolerability, and preliminary efficacy
- of NX-2127 in adult patients with relapsed/refractory NHL and CLL: Phase 1a (dose escalation) will use an accelerated modified Fibonacci dose-escalation
- design that transitions to a standard 3 + 3 design based on protocol-specific criteria. - Phase 1b (cohort expansion) will evaluate efficacy in indication-specific cohorts.
- Key eligibility criteria: ≥2 prior lines of therapy; measurable or other evaluable disease per indication-specific response criteria; ECOG performance status 0 or 1.
- Primary objectives:
- Phase 1a: evaluate safety and tolerability and determine the MTD of NX-2127.
- Phase 1b: evaluate early clinical activity of NX-2127 in expansion cohorts
- NX-2127 is administered orally once daily in 28-day cycles.

Figure 3. Patient disposition

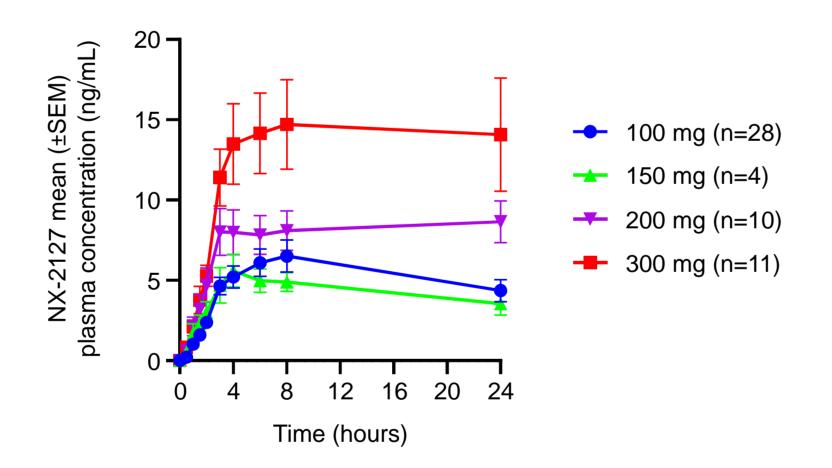
- Patients dosed include: **CLL/SLL:** n=33 (61.1%) - **DLBCL:** n=6 (11.1%)
- MCL: n=7 (13.0%) - **MZL:** n=3 (5.6%) **WM:** n=3 (5.6%)
- **FL:** n=2 (3.7%) Data cutoff: 15 Sep 2023

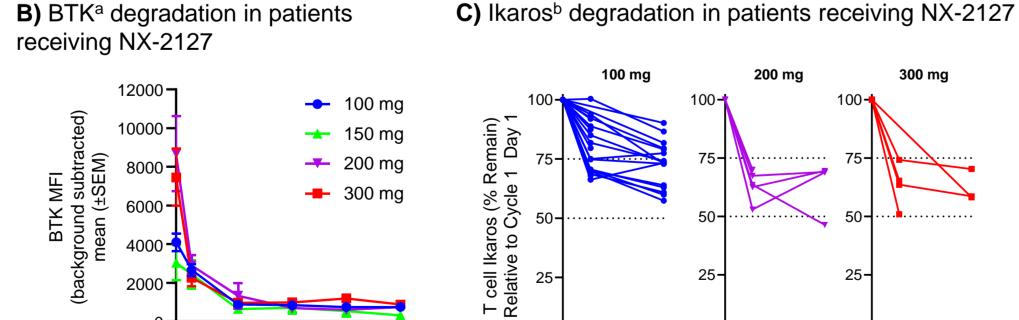
Results

Table 1. Baseline characteristics

Characteristic	istic NHL/WM CLL/SLL (n=21) (n=33)		Overall population (N=54)	
Median age, years (range)	70.0 (50.0–92.0)	74.0 (58.0–90.0)	72.5 (50.0–92.0)	
Female, n (%) Male, n (%)	6 (28.6) 15 (71.4)	11 (33.3) 22 (66.7)	17 (31.5) 37 (68.5)	
ECOG PS, n (%)				
0 1	10 (47.6) 11 (52.4)	18 (54.5) 15 (45.5)	28 (51.9) 26 (48.1)	
Previous targeted treatments ^a , n (%)				
BTKi	15 (71.4)	33 (100.0)	48 (88.9)	
Pirtobrutinib	5 (23.8)	9 (27.3)	14 (25.9)	
BTKi and BCL2i	1 (4.8)	26 (78.8)	27 (50.0)	
cBTKi, ncBTKi, and BCL2i	0 (0.0)	8 (24.2)	8 (14.8)	
CAR-T/-NK therapy	3 (14.3)	1 (3.0)	4 (7.4)	
Bispecific antibody	2 (9.5)	0 (0.0)	2 (3.7)	
Immunomodulatory therapy (lenalidomide)	4 (19.0)	4 (12.1)	8 (14.8)	
Median number of lines of prior therapy (median, range)	4 (2–10)	5 (2–11)	4 (2–11)	
Mutations ^a , n (%)				
BTK	3 (14.3)	12 (36.4)	15 (27.8)	
C481S or C481R	1 (4.8)	7 (21.2)	8 (14.8)	
L528W	1 (4.8)	4 (12.1)	5 (9.3)	
T474F or T474I	1 (4.8)	4 (12.1)	5 (9.3)	
V416L	0 (0.0)	1 (3.0)	1 (1.9)	
L512V	1 (4.8)	0 (0.0)	1 (1.9)	
PLCG2 ^b	2 (9.5)	1 (3.0)	3 (5.6)	
BCL2 (G101V)	0 (0.0)	4 (12.1)	4 (7.4)	

- · Patient population was predominantly elderly with multiple prior lines of targeted therapies and acquired mutations associated with drug resistance (see Table 1).
- Median follow-up for the study was 9.7 (range 0.6–27.5) months.


seguencing (allelic frequency≥5% is reported): bL845F, D334H, D1140N, T961M, S707


^aPatients could have multiple prior treatments and BTK mutations; mutations were tested centrally at baseline by next-generation

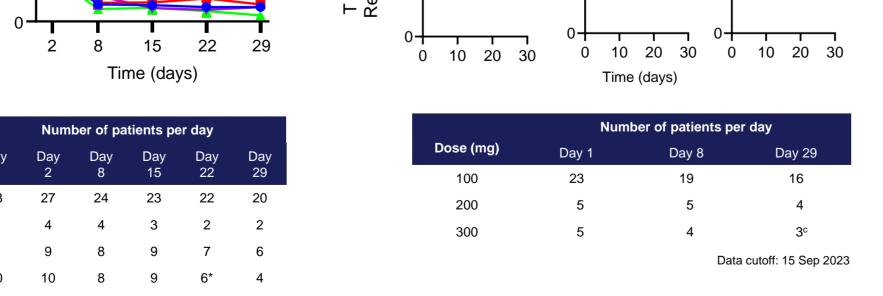
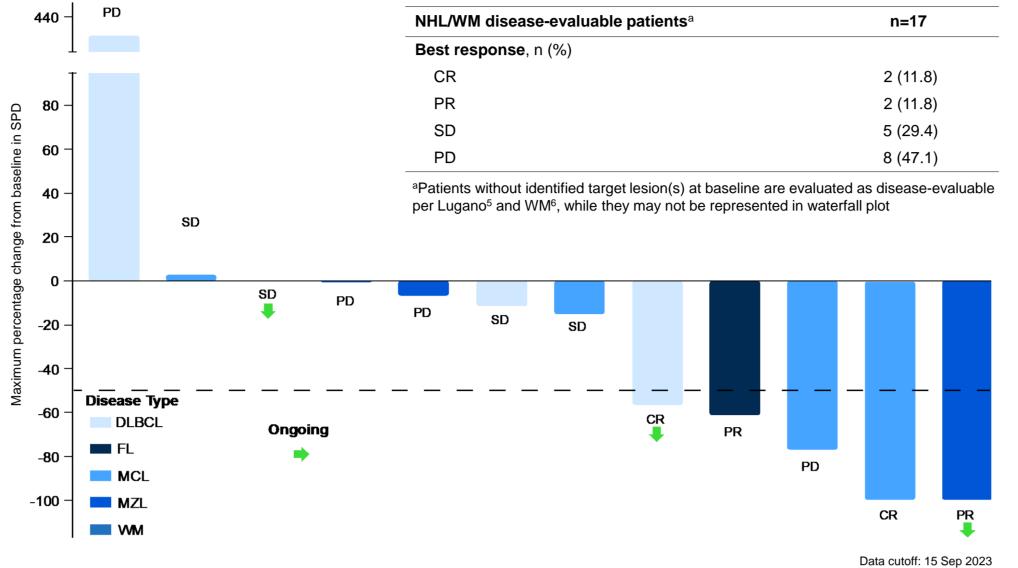

 The most common reasons for treatment discontinuation were disease progression (n=16) and adverse events (n=12).

Figure 4. NX-2127 pharmacokinetics and proximal biomarker changes

A) NX-2127 C1D1 pharmacokinetics


NX-2127 exhibited dose-dependent pharmacokinetics with a mean half-life of 2-4 days

^aBTK measured in patient B-cells whole blood using flow cytometry assay; ^bIkaros measured in patient T-cells in PBMC using flow cytometry

assay; c1 patient had dose modification from Day 19 onwards

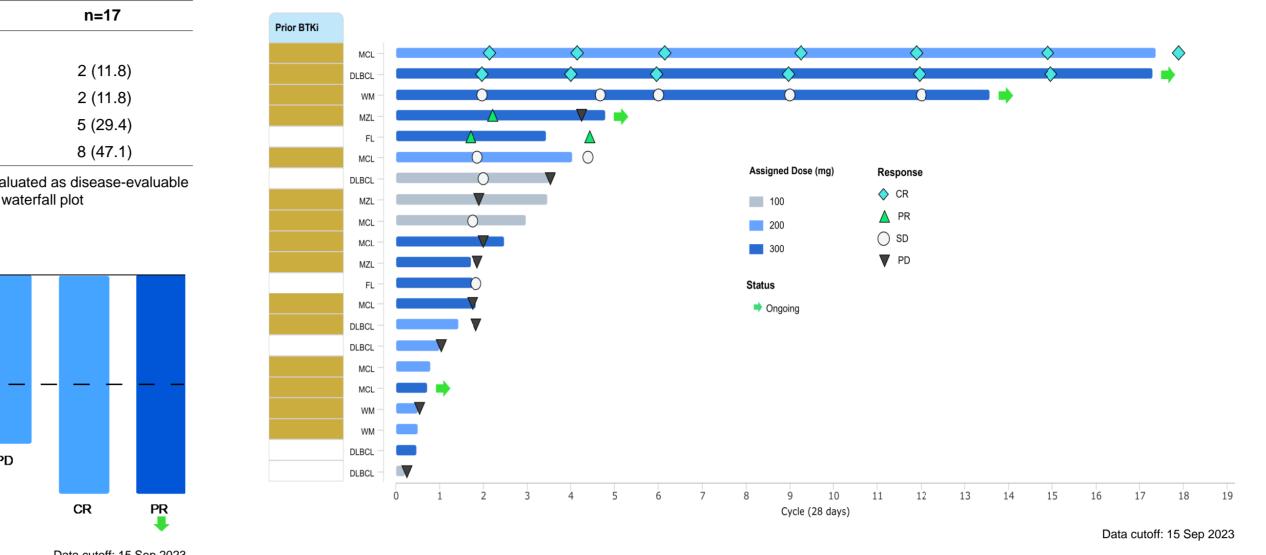
- across cohorts (Figure 4A). Rapid, robust, and sustained BTK degradation was observed in all patients, regardless of their absolute BTK starting level, tumor type, or dose level of NX-2127 (Figure 4B).
- Consistent with the immunomodulatory activity of NX-2127, degradation of the cereblon neo-substrate Ikaros was observed (Figure 4C).

Figure 5. NX-2127 efficacy (patients with NHL/WM)

- As of the 15 Sep 2023 cutoff date, 17 patients with NHL were disease-evaluable.
- Two patients (one MCL and one DLBCL), had a CR (Figure 5):
- Treatment was ongoing in the patient with DLBCL (17 months' duration; Figure 6).

CLL/SLL disease-evaluable patients^a

Objective response rate^b, % (95% CI)


^aPatients without identified target lesion(s) at baseline are evaluated as

Objective response rate includes CR + CRi + nPR + PR-L + PR

disease-evaluable per iwCLL7, while they may not be represented in waterfall plot;

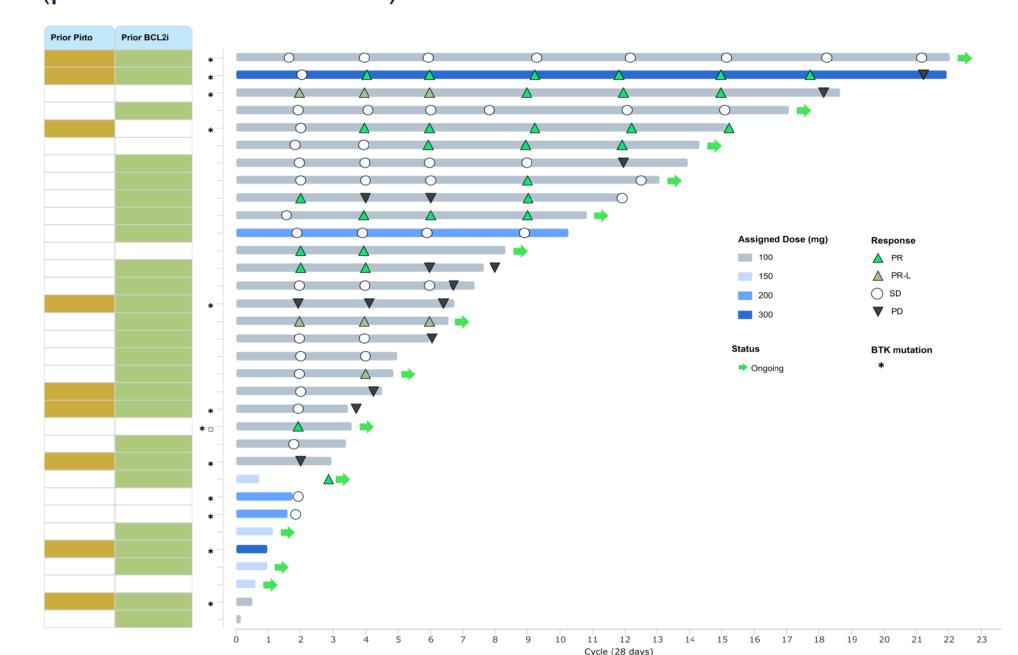

The patient with MCL discontinued treatment in the setting of a CR

Figure 6. Duration of treatment and best response to NX-2127 (patients with NHL/WM)

- Two further patients (one FL and one MZL) had a PR (Figure 6):
- FL patient had prior CAR-T/bispecific therapy.
- Treatment was ongoing in the patient with MZL (4+ months' duration) and in one other patient with WM who had SD (see Figure 6).

Figure 8. Duration of treatment and best response to NX-2127 Figure 7. NX-2127 efficacy (patients with CLL/SLL)

40.7 (22.4-61.2)

0 (0.0)

11 (40.7)

12 (44.4)

4 (14.8)

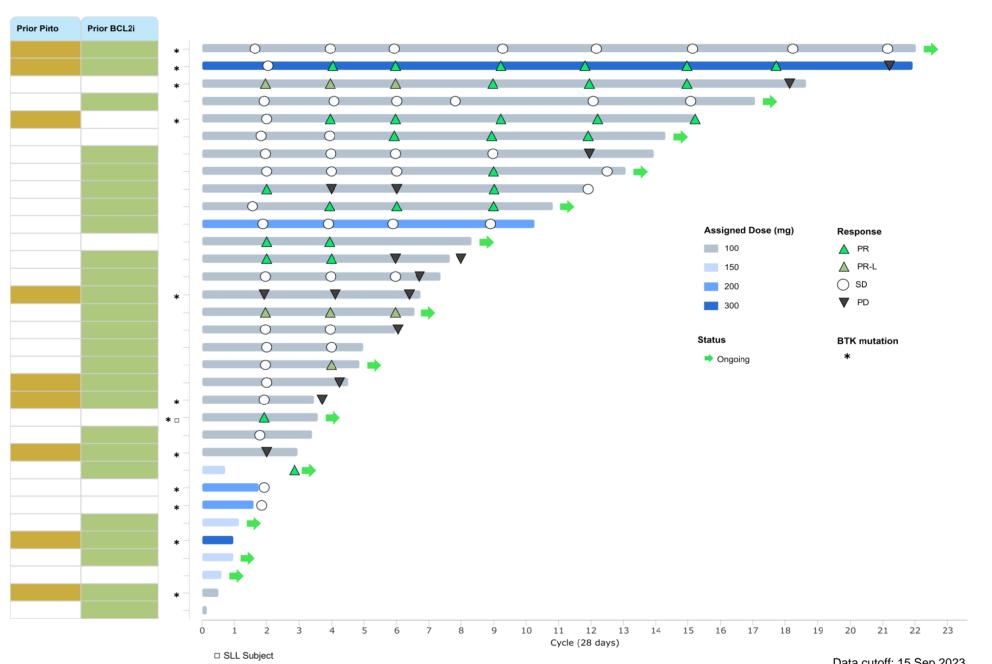
Data cutoff: 15 Sep 2023

- 11 patients had a PR or PR-L (Figure 7).
- 12 patients had SD at the time of data cutoff (Figure 7).

Assigned Dose (mg)

-100 – 200

 Responses were seen in double- and triple-exposed (including pirtobrutinib) patients. - Treatment is ongoing in 13 patients (see Figure 8).


• As of the 15 Sep 2023 cut-off date, 27 patients with CLL/SLL were disease-evaluable:

- Eight patients have been on treatment for longer than 12 months.

Table 2. Frequency of any grade TEAEs in ≥20% of patients, or grade ≥3 TEAEs or SAEs in >1 patient (N=54)

TEAEs, (%)	Any grade	Grade ≥3	SAEs
Fatigue	25 (46.3)	-	_
Neutropenia ^a	25 (46.3)	23 (42.6)	-
Hypertension	18 (33.3)	8 (14.8)	_
Bruising/contusion ^b	16 (29.6)	_	1 (1.9)
Diarrhea	16 (29.6)	_	_
Anemia	13 (24.1)	8 (14.8)	1 (1.9)
Dizziness	13 (24.1)	_	_
Dyspnea	13 (24.1)	1 (1.9)	_
Thrombocytopeniac	13 (24.1)	4 (7.4)	_
Constipation	12 (22.2)	_	_
Headache	11 (20.4)	_	_
Upper GI hemorrhaged	2 (3.7)	2 (3.7)	2 (3.7)
Pruritus	11 (20.4)	1 (1.9)	_
COVID-19	7 (13.0)	4 (7.4)	3 (5.6)
Atrial fibrillatione	6 (11.1)	3 (5.6)	3 (5.6)
Pneumonia	6 (11.1)	3 (5.6)	3 (5.6)
Pain in extremity	5 (9.3)	2 (3.7)	1 (1.9)
Leukocytosis	3 (5.6)	3 (5.6)	_
Lymphocyte count increased	2 (3.7)	2 (3.7)	_
Sepsis ^f	2 (3.7)	2 (3.7)	2 (3.7)

(patients with CLL/SLL)

Table 3. Frequency of any grade TEAEs by dose in ≥20% of patients (N=54)

All doses (N=54)	100 mg (n=28)	150 mg (n=4)	200 mg (n=10)	300 mg (n=12)
25 (46.3)	16 (57.1)	1 (25.0)	5 (50.0)	3 (25.0)
25 (46.3)	9 (32.1)	1 (25.0)	6 (60.0)	9 (75.0)
18 (33.3)	12 (42.9)	0 (0.0)	2 (20.0)	4 (33.3)
16 (29.6)	7 (25.0)	1 (25.0)	4 (40.0)	4 (33.3)
16 (29.6)	9 (32.1)	1 (25.0)	2 (20.0)	4 (33.3)
13 (24.1)	6 (21.4)	0 (0.0)	4 (40.0)	3 (25.0)
13 (24.1)	4 (14.3)	3 (75.0)	2 (20.0)	4 (33.3)
13 (24.1)	6 (21.4)	0 (0.0)	4 (40.0)	3 (25.0)
13 (24.1)	6 (21.4)	0 (0.0)	3 (30.0)	4 (33.3)
12 (22.2)	9 (32.1)	1 (25.0)	1 (10.0)	1 (8.3)
11 (20.4)	4 (14.3)	2 (50.0)	3 (30.0)	2 (16.7)
11 (20.4)	7 (25.0)	0 (0.0)	1 (10.0)	3 (25.0)
	(N=54) 25 (46.3) 25 (46.3) 18 (33.3) 16 (29.6) 16 (29.6) 13 (24.1) 13 (24.1) 13 (24.1) 13 (24.1) 12 (22.2) 11 (20.4)	(N=54) (n=28) 25 (46.3) 16 (57.1) 25 (46.3) 9 (32.1) 18 (33.3) 12 (42.9) 16 (29.6) 7 (25.0) 16 (29.6) 9 (32.1) 13 (24.1) 6 (21.4) 13 (24.1) 6 (21.4) 13 (24.1) 6 (21.4) 13 (24.1) 6 (21.4) 13 (24.1) 6 (21.4) 14 (14.3) 15 (22.2) 9 (32.1) 11 (20.4) 4 (14.3)	(N=54) (n=28) (n=4) 25 (46.3) 16 (57.1) 1 (25.0) 25 (46.3) 9 (32.1) 1 (25.0) 18 (33.3) 12 (42.9) 0 (0.0) 16 (29.6) 7 (25.0) 1 (25.0) 16 (29.6) 9 (32.1) 1 (25.0) 13 (24.1) 6 (21.4) 0 (0.0) 13 (24.1) 6 (21.4) 0 (0.0) 13 (24.1) 6 (21.4) 0 (0.0) 13 (24.1) 6 (21.4) 0 (0.0) 12 (22.2) 9 (32.1) 1 (25.0) 11 (20.4) 4 (14.3) 2 (50.0)	(N=54) (n=28) (n=4) (n=10) 25 (46.3) 16 (57.1) 1 (25.0) 5 (50.0) 25 (46.3) 9 (32.1) 1 (25.0) 6 (60.0) 18 (33.3) 12 (42.9) 0 (0.0) 2 (20.0) 16 (29.6) 7 (25.0) 1 (25.0) 4 (40.0) 16 (29.6) 9 (32.1) 1 (25.0) 2 (20.0) 13 (24.1) 6 (21.4) 0 (0.0) 4 (40.0) 13 (24.1) 6 (21.4) 0 (0.0) 4 (40.0) 13 (24.1) 6 (21.4) 0 (0.0) 3 (30.0) 12 (22.2) 9 (32.1) 1 (25.0) 1 (10.0) 11 (20.4) 4 (14.3) 2 (50.0) 3 (30.0)

of bruising and contusion; cAggregate of 'thrombocytopenia' and 'platelet count decreased'

- The most common TEAEs (any grade) were fatigue, neutropenia, hypertension, bruising/contusion, and diarrhea (see Tables 2 and 3). The most common grade ≥3 TEAEs were neutropenia, hypertension, and anemia.
- Neutropenia showed evidence of dose response.
- Atrial fibrillation was observed in 6 patients (11.1%; down from 17% reported previously). with 3 patients (5.6%) having grade ≥3 events.
- Twenty-one patients (38.9%) had serious TEAEs, of whom 8 (14.8%) had SAEs considered related to NX-2127 treatment.
- Two patients experienced DLTs (cognitive disturbance, neutropenia; both at 300 mg dose level), and 13 patients developed TEAEs that resulted in discontinuation of NX-2127.

Conclusions

- NX-2127 exposure in patients with NHL and **CLL** results in robust and sustained degradation of BTK and biologically-relevant degradation of Ikaros.
- NX-2127 had a manageable safety profile that was consistent with previous reports for BTK-targeted and immunomodulatory therapies.
- Treatment with NX-2127 resulted in encouraging and durable responses in a heavily pre-treated patient population:

- ✓ Rapid (8-week) and durable CRs were observed in 2 patients (DLBCL, MCL).
- ✓ Rapid (8-week) PRs were observed in 2 patients (FL, MZL).

CLL

- ✓ PRs were observed in 11 patients (9 PRs, 2 PR-Ls).
- ✓ Objective response rate was 40.7% as of the cutoff date, and treatment was ongoing in 13 patients.
- Dose-expansion cohorts of patients with **NHL** have been initiated at the 300 mg daily dose.

References

- 1. Montoya S, et al. Blood 2022;140(Suppl 1):1811-3.
- 2. Noviski M, et al. Cancer Res 2023;82 (12 Suppl):1126.
- 3. Mato AR, et al. Blood 2022;140(Suppl 1):2329-32. 4. Danilov A, et al. Hematol Oncol 2023;41:570-1.
- 5. Cheson BD, et al. J Clin Oncol 2014;32:3059-68.
- 6. Owen RG, et al. Br J Haematol 2013;160:171-6.
- 7. Hallek M, et al. Blood 2018;131:2745-60.

Abbreviations

BCR, B-cell receptor; BCL2i, B-cell lymphoma-2 inhibitor; BTK, Bruton's tyrosine kinase; BTKi, BTK inhibitor; cBTKi, covalent BTKi; ncBTKi, noncovalent BTKi; CAR-T, chimeric antigen receptor T cell; CAR-NK, chimeric antigen receptor natural killer cell; CI, confidence interval; CLL, chronic lymphocytic leukemia; CR, complete response; CRBN, cereblon; DLBCL, diffuse large B-cell lymphoma; **DLT**, dose-limiting toxicity; **ECOG**, Eastern Cooperative Oncology Group; FL, follicular lymphoma; GI, gastrointestinal; IFN, interferon; IL, interleukin; MCL, mantle cell lymphoma; MFI, mean fluorescence intensity; MTD, maximum tolerated dose; MZL, marginal zone lymphoma; NHL, non-Hodgkin's lymphoma; PD, progressive disease; PLCG, phospholipase C gamma 2 gene; PR, partial response; PR-L, partial response with rebound lymphocytosis; SAE, serious adverse event; SD, stable disease; SEM, standard error of the mean; SLL, small lymphocytic lymphoma; SPD, sum of product diameters; TEAE, treatment-emergent adverse event; VAF, variant allele frequency; WM, Waldenstrom's macroglobulinemia.

Acknowledgments

The authors would like to thank all patients, their caregivers, and their treating physicians for participating in the NX-2127-001 study, which was sponsored by Nurix Therapeutics, Inc.

Nurix Therapeutics, Inc. also funded the editorial/layout support for this poster, which was provided by Miller Medical Communications.

eAggregate of 'atrial fibrillation' and 'atrial flutter'; flncludes two grade 5 events