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Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company’s 
own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, 
and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data 
included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. 
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Lead Identification is a central challenge in small molecule drug discovery

How can this be done efficiently for novel therapeutic targets?

High Throughput Screening (HTS)

Virtual Screening

DNA Encoded Libraries (DEL)

DEL + Machine Learning (DEL AI)

Library Size (Log10)

Fragment Screening

Small Molecule Drug Discovery 

Begins with a Binder



DEL is a Productive Lead ID Technology 

Generating Massive Datasets



A Primer on DEL Data Interpretation

When reviewing DEL data in a Cube representation, we are 

looking for structural patterns in the data.  
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BB = chemical Building Block
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looking for structural patterns in the data.  
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When reviewing DEL data in a Cube representation, we are 

looking for structural patterns in the data.  

The Cube Lines: 2 shared building blocks

Planes: 1 shared building block

BB1

Any

BB2

Any

Any

BB2

A Primer on DEL Data Interpretation



BB1 Name

B
B

2
 N

a
m

e

When reviewing DEL data in a Cube representation, we are 

looking for structural patterns in the data.  

In comparing two sets of 

DEL data, we evaluate the 

similarity of these patterns.

The Cube

BB1

BB3

BB2

A Primer on DEL Data Interpretation



Traditional DEL ML Approaches

• Established DEL ML 
approaches train models on 
single target datasets 

• These models predict 
binding to a single protein 
and are inefficient to scale to 
ligand discovery across 
diverse targets 

• Rely on time and resource 
intensive quality protein 
production and DEL screen 
execution.

DEL Foundation is a Generalized Model 

Able to Prospectively Predict DEL Data



Traditional DEL ML Approaches DEL Foundation Model

DEL Foundation is a Generalized Model 

Able to Prospectively Predict DEL Data

• Established DEL ML 
approaches train models on 
single target datasets

• These models predict 
binding to a single protein 
and are inefficient to scale to 
ligand discovery across 
diverse targets 

• Rely on time and resource 
intensive quality protein 
production and DEL screen 
execution

• DEL Foundation Model is 
trained on DEL datasets 
from diverse protein targets

• These models learn a 
generalized relationship 
between protein sequence 
and molecular structure

• DEL Foundation is thus 
able to predict DEL data on 
proteins without the need 
for experimental data



DEL Foundation Enables Efficient 

Ligand ID for Unseen Targets

DEL Foundation-based 
Lead ID bypasses multiple 
resource intensive 
processes and unlocks 
targets which are 
otherwise “un-DEL-able”



DEL Foundation Enables Efficient 

Ligand ID for Unseen Targets

DEL Foundation-based 
Lead ID bypasses multiple 
resource intensive 
processes and unlocks 
targets which are 
otherwise “un-DEL-able”

DEL Foundation 
models allow access 
to broad swaths of the 
proteome



Schematic of Data Processing and Model Architecture

Collaboration between Nurix, Loka Inc., 

and Amazon Web Services

DEL Foundation Leverages Nurix's 

Proprietary and Highly Ordered Datasets



DEL Foundation Dataset Construction 

and Definition of Terms

Experimental Actives 
Ligands enriched in the 
DEL screen

Experimental Inactives 
Ligands which did not 
enrich in the DEL 
screen, sampled from 
full DEL library

Retrospective datasets constructed 

from experimental data



DEL Foundation Dataset Construction 

and Definition of Terms

Experimental Actives 
Ligands enriched in the 
DEL screen

Experimental Inactives 
Ligands which did not 
enrich in the DEL 
screen, sampled from 
full DEL library

Retrospective datasets constructed 

from experimental data

Datasets not in the training dataset 

are evaluated by DEL Foundation 

(DEL FM)

DEL FM Actives 
Ligands predicted as 
binders (high DEL FM 
score)

DEL FM Inactives 
Ligands predicted as 
non-binders (low DEL 
FM score)



Different Lenses on Prospective DEL 

Foundation Predictions

Can DEL Foundation prospectively predict 

binders for new proteins?

Can DEL Foundation prospectively predict binders from new libraries?

Novel Constructs

Novel Target Forms

Novel Targets



High Accuracy Predicting Experimental 

Data on New Constructs

POI truncHis-Avi-

POI truncAvi-

POI trunc -Avi

POI FLAvi- -His

Constructs in Training

Constructs in Holdout

Experimental Actives

POI = Protein Of Interest

Binders predicted by DEL Foundation align closely to experimental data for a novel construct 
outside the training dataset. 
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High Accuracy Predicting Experimental 

Data on New Target Forms

POI trunc6H-Avi-

POI FL

Target Form in Training

Target Form in Holdout

Avi- BP

Experimental Actives

Binders predicted by DEL FM largely recapitulate experimental data of a protein complex.  

Additionally, DEL FM ignores an experimentally observed plane considered promiscuous. 

POI = Protein Of Interest

BP = Binding Partner
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DEL FM predicts subset of experimental signal, inclusive of confirmed ligands.

DEL Foundation Identifies Confirmed 

Binders from High Background Screen 

POI = Protein Of Interest

pPOI = phosphorylated POI

BP = Binding Partner
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DEL FM predicts subset of experimental signal, inclusive of confirmed ligands.

POI = Protein Of Interest

pPOI = phosphorylated POI

BP = Binding Partner



0.6 μM 3.2 μM0.2 μM12.5 μM

DEL FM Actives with 
Experimental Annotation

Experimental Actives

POIAvi-

Targets in Holdout

Avi-

pPOIAvi-

BP

BP

BP

Target Forms in Training

DEL Foundation Identifies Confirmed 

Binders from High Background Screen 

DEL FM predicts subset of experimental signal, inclusive of confirmed ligands.

POI = Protein Of Interest

pPOI = phosphorylated POI

BP = Binding Partner



Predicting Small Molecule Binders to 

Novel Proteins Beyond Training Data

DEL Foundation predicts most dominant patterns in experimental data despite low sequence 
similarity of query proteins to those in the training set.

Target 1

71% Seq Sim

Experimental 

Actives

DEL FM Actives 

with Experimental 
Annotation

Target 2

79% Seq Sim
Target 3

53% Seq Sim

Experimental 

Actives
Experimental 
Inactives
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Evaluating the global relationship 

between sequence similarity and 

model performance, we expect 

DEL Foundation to provide 

actionable predictions for targets 

with as low as 0.5 similarity to a 

target in the training set.



Different Lenses on Prospective DEL 

Foundation Predictions

Can DEL Foundation prospectively predict 

binders for new proteins?

Can DEL Foundation prospectively predict binders from new libraries?

Novel Constructs

Novel Target Forms

Novel Targets



DEL Foundation Can Predict Binders 

from Libraries Beyond Training Set

LOO* Experimental Design

*LOO = Leave One Out 1 Blevins, A; BELKA; NeurIps, 2024

ML models that can generalize to new chemical space expand application scope, especially 

towards use for Lead Optimization.  

A recent public competition was unable to make predictions for libraries outside the training set.1 

We tested the ability of DEL FM to succeed on this task.
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LOO Experimental Design

1 Blevins, A; BELKA; NeurIps, 2024

ML models that can generalize to new chemical space expand application scope, especially 

towards use for Lead Optimization.  

A recent public competition was unable to make predictions for libraries outside the training set.1 

We tested the ability of DEL FM to succeed on this task.



DEL Foundation Can Predict Binders 

from Libraries Beyond Training Set

Holdout PredictionsLOO Experimental Design

Random Chance

ML models that can generalize to new chemical space expand application scope, especially 

towards use for Lead Optimization.  

A recent public competition was unable to make predictions for libraries outside the training set.1 

We tested the ability of DEL FM to succeed on this task.



Diversity of DEL Libraries in Foundation 

Model Training Set

Analysis of libraries in training set demonstrates structural diversity consistent with design
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Group 1

Group 3

Group 4

Group 2



Diversity of DEL Libraries in Foundation 

Model Training Set

DEL FM predicts binders from unseen libraries representing distinct regions of chemical space
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Diversity of DEL Libraries in Foundation 

Model Training Set

DEL FM predicts binders from unseen libraries representing distinct regions of chemical space

Holdout Predictions
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Continued Development of DEL FM 

Addresses Realities of Experimental DEL



Summary

• DEL Foundation is a first-in-class ML model able to prospectively predict DEL data

• DEL Foundation predicts DEL data for novel protein targets with performance 

correlated with similarity of the query protein sequence to training data

• DEL Foundation generalizes to unseen DEL libraries and unseen chemical space

• DEL Foundation transforms the scale and approach of Lead ID at Nurix
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