
From Incremental to Exponential: Integrating AI and DEL to Enable Discovery Across the Proteome

DNA Encoded Library (DEL) Screening Technology

Figure 1: DEL Data Generation at Nurix DNA-Encoded Libraries1 (DELs) are collections of small molecules

encoded with unique DNA barcodes that record their synthetic history and building block identity. These

libraries are pooled in a screening format that enables screening billions of compounds against a desired

target. DELs enable rapid identification of binders by sequencing the enriched DNA tags after affinity selection

of the desired target.
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DEL Foundation Models (DEL FM) Enable in Silico DEL Experiments

DEL datasets provide large-scale, structured, and chemically diverse interaction data 

ideal for training deep learning models. The scale of these models enable robust 

pretraining and fine-tuning for downstream tasks including lead discovery and 

optimization. This positions DEL-AI approaches to generalize beyond single screens, 

accelerating drug discovery even in low-data or novel target settings.

The synergy between DEL and a multitude of complementary computational 

methods drives a more efficient hit-to-lead process. Data-guided modeling and 

iterative experimentation accelerate and sharpen the expansion of promising hits into 

high-quality drug candidates.

By integrating DEL-guided machine learning with computational chemistry and 

automated chemistry, Nurix is building a discovery engine that moves degrader 

creation from virtual to viable—accelerating the path from computational prediction to  

clinically meaningful therapies.
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> 6 Trillion DEL Datapoints > 60 High Affinity Series> 5 Billion DEL Ligands

1000’s of Building Blocks

Combinatorial Synthesis

DEL Protein
Hit Selection and Confirmation

Typically, only a few compounds from the entire DEL 

output are resynthesized and validated – massively 

underutilizing the DEL platform’s full potential.

At Nurix, we take an expansive and data-driven approach 

to lead optimization that leverages broader insights from 

DEL outputs to improve downstream medicinal chemistry 

efforts. Multiple computational methods are used to 

enumerate parallel libraries and triage the designs. 

Generative ML: Designs novel 

compounds with better 

properties, that are also 

synthetically accessible. DEL ML 

and DEL Foundation models 

predict bioactivity while ADMET 

models predict molecular 

properties, which accelerates 

compound prioritization. 
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Seed Ligand

Zooming in to DEL Ligands constructed of 30 

most similar BBs to those in a DEL ligand of 

interest (seed ligand).

Chemists and computational scientists designed and triaged initial hit expansion libraries for 

two validated DEL hit series with the aid of DEL SAR insights

197 ligands synthesized!
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Computational Chemistry: Molecular docking, 

dynamics, and shape-based queries to model 

binding interactions and optimize ligand-target 

affinity at the atomic level.

Figure 4: DEL FM Predicts 

New Chemical Matter: A. 

Visual depicting overlap of a 

set of DNA Encoded Libraries 

with unique sets of reaction 

chemistries. B. Procedure to 

evaluate performance. Each 

group was iteratively left out 

of training data for DEL-FM. 

Performance on each  DEL in 

the holdout demonstrates 

the model’s generalizability 

beyond baseline (dotted line)

Figure 7: Initial hit expansion libraries improve molecular properties and lipophilic efficiency of the validated DEL hits and 

provide further information for medicinal chemistry optimization: A. Molecular lipophilicity plotted against SPR Kd (logscale) for 

two target X DEL expansion libraries; the color gradient shows the lipophilic ligand efficiency (LLE). Red and dark blue dots 

represent the reference Series 1 and Series 2 hits, respectively, and their enantiomers while orange and cyan colors correspond to 

the DEL expansion library molecules. B. Histograms of SPR Kds (nM) for the two libraries. These were not informed by co-crystal 

structures.

Figure 5: DEL FM Predicts and Denoises Enriched Chemical 

Matter: A. Enriched chemical matter of an unseen protein. B. 

Binders predicted by DEL FM largely recapitulate experimental 

data of a protein complex. Coloring of these molecules by DEL 

FM annotates important structures (purple) while ignoring 

promiscuous plane (yellow).
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Figure 6: Initial hit expansion library triage workflow using computational methods, structural 

diversity and medicinal chemistry intuition.
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Cheminformatics: Enables 

efficient SAR analysis, 

clustering, and visualization 

of DEL chemical space to 

prioritize analogs with 

optimal properties. 
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Targeted Protein Degradation for Drugging the Undruggable

Nurix Therapeutics combines DNA-Encoded 

Library (DEL) screening with machine learning to 

accelerate small molecule drug discovery.

This enables the design of bifunctional 

degraders that direct disease-causing proteins 

to the ubiquitin–proteasome system for 

targeted elimination. 

Nurix aims to harness the full potential of DEL-

guided AI to create an autonomous discovery 

engine—accelerating the design of next-

generation degraders and expanding the reach 

of targeted protein degradation across 

previously inaccessible targets.

Figure 2: DEL ML Pipeline: This category of 

models takes enrichment data from a single 

DEL experiment and predicts activity based on 

molecular featurization. Models then are used 

for hit triaging, noise reduction, and informing 

synthesis follow-up2-6

These models predict binding to a single 

protein, are quick to train, and are effective on 

single target prediction tasks.

Figure 3: A Foundation Model Trained on DEL:

DEL FM pipelines take enrichment data from 

multiple DEL experiments across different 

proteins and conditions. Models learn a 

generalizable relationship between protein 

sequence and molecular structure

DEL FM then predicts activity of each 

molecule, protein pair as if it were DEL data 

without experimental data prerequisites for 

either member
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