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• The inherent complexity of in vivo PD data mandates 
innovative approaches to the successful application of 
machine-learning methods.

•  Using a combination of feature engineering and model 
stacking, we have developed a suite of performant 
machine-learning models able to predict a broad spectrum 
of high-value in vivo and in vitro PK and PD endpoints to a 
high level of accuracy.  

• In data regimes characterized by heterogeneity due to 
diversity of compounds and experimental conditions, 
predicted PK properties serve as reliable features for 
developing robust machine learning models.

Background
Targeted protein degradation (TPD) is a rapidly advancing area of drug 
discovery that harnesses the cell’s machinery to eliminate disease-
causing proteins. Bivalent TPD molecules occupy a differential chemical 
space compared to traditional small-molecule drugs and display 
differentiated PK property profiles.  As a result, rules governing 
optimization developed for small-molecule drugs do not translate to 
degrader development.  

Machine learning (ML) offers an opportunity to learn directly from 
primary data to generate predictive models to guide TPD development.  
However, the diversity across high-fidelity PK/PD endpoints present an 
opportunity for developing robust, data-efficient ML techniques that 
capitalize on the complementary information encoded in each assay.

We report here a feature engineering and model-stacking approach 
which allows us to aggregate data from disparate in vivo datasets and 
further leverage our DEL-AI platform to train ML models with high 
accuracy in PK and PD prediction.

Feature Engineering for Dataset Aggregation

Conclusions

Abbreviations
SM : Small Molecules.

TPD : Targeted Protein Degraders.

PK : Pharmacokinetics; what the body does to the drug.

PD : Pharmacodynamics; what the drug does to the body.

ML : Machine Learning.
AB-MPS : AbbVie Multiparameter Score; estimates the 
likelihood of successful preclinical pharmacokinetic (PK) results.

NRB : Number of Rotatable Bonds.

NAR :  Number of Aromatic Rings.

TPSA : Total Polar Surface Area.

HBD : Number of Hydrogen Bond Donors.

MW : Molecular Weight (in Da).

AUC : Area Under Plasma Concentration Curve.
Cmax : Peak concentration.

Tmax : Time to Cmax.

%F : Oral bioavailability ; percentage of drug that reaches. 
systemic circulation.

CNS : Central Nervous System.

Modeling Drug Plasma Exposure Curves

C. Models Predict Plasma 
Concentration Over Time

D. PK Properties Derived From Predicted Plasma Concentration 
Curves Align with Experimental Values

R2=0.65 R2=0.75 R2=0.67 
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Figure 2. Dataset Aggregation through 
Encoding Experimental Parameters. (A) 
Training models on fractured datasets 
leads to underpowered models with 
limited scope.  (B) Aggregating related 
datasets by encoding experimental 
parameters allows for aggregating larger 
training sets for more broadly applicable 
models.  (C) Example encoding for multi-
species and multi-dose models. 
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A. Drug Plasma Exposure 
Curves and Derived PK Values
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B. Predicting Exposure 
Curves with ML Models

A. Differentiated Property 
Space for TPD and SM Drugs

B. AB-MPS score, an Important PK 
Predictor Shows Low Correlation with 

Experimental PK for TPDs

C. Heterogeneity in In Vivo Data 
Arising from Diverse 

Experimental Conditions

Figure 3. Modeling Plasma Exposure Curves Enables 
Prediction of PK endpoints.

(A) Example drug plasma exposure-curve with labelling 
of PK endpoints. 

(B) Predicted vs Experimental exposure-curve using our 
ML model.  

(C) Predicted vs Experimental prediction of individual 
(Time, Conc) points from exposure-curves.  

(D) Comparison of AUC and Cmax derived from 
Experimental vs Predicted exposure-curves.

Stacked Ensemble Models 
Predicting PD and CNS Exposure

Feature Type Example Feature Feature Size

Structural Fingerprints C(=C)(C)N ~1000+ bits

Molecular Properties MW, HBD ~50

Calculable Descriptors BCUT2D, CalcNPR1 ~100’s

Predicted PK pAUC, pPPB ~10

pAUC pCL pDmax pDC50
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Example Model Stacking for in vivo PD

AUC Predictions Prioritize Compounds 
and Formulations Prior To In Vivo Testing 

Predicted Features Enable Modeling of 
In Vivo PD

Predicted Features Enable Modeling of 
CNS Exposure
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Figure 1. Current Challenges in the Development of TPD Therapeutics

Figure 5. Overview of Feature Sizes and Representation Methods Compounds with high AUC (uM*hr) across
 all doses and formulations

Figure 4. (A) Boxplot Explaining Trends in Doses & Formulations 
(B) Heatmap Explaining Trends Across Compounds

Figure 6. (A) Model Performance on Test Set Figure 7. (A) Model Performance on Test Set

In vivo PD dataset, grouped 
by assay conditions 
(Species, Dose, and 
Formulation)

Figure 7. (B) Key Feature Contributions for CNS ExposureFigure 6. (B) Key Feature Contributions for In Vivo PD   

R2=0.003 R2=0.007

AB-MPS = Abs(cLogD – 3) + NAR + NRB
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