¹Nirav N. Shah, ²Zulfa Omer, ³Alexey Danilov, ⁴Francesco Forconi, ⁵Graham P. Collins, ⁶Shuo Ma, ⁷Jane Robertson, ⁸Alvaro Alencar, ⁹Danielle Brander, ²John C. Byrd, ¹⁰Dima El-Sharkawi, ¹¹Jeffery Smith, ¹²Allison Winter, ¹³Michal Kwiatek, 4Medical College of Wisconsin, Milwaukee, WI, USA; 2University of Cincinnati, Cincinnati, OH, USA; 3City of Hope National Medical Center, Duarte, CA, USA; 4University Hospital Southampton NHS Trust, Southampton, UK; ⁵Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, UK; ⁶Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; ⁷The Christie Hospital and Manchester Cancer Research Centre, Division of Cancer Sciences, Manchester, UK; ⁸Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; ⁹Duke Cancer Institute, Durham, NC, USA; 10 Royal Marsden NHS Foundation Trust, Sutton, UK; 11 The Clatterbridge Cancer Centre, Liverpool, UK; 12 Cleveland Clinic Foundation, Cleveland, OH, USA; 13 AidPort Hospital, Skórzewo (Poznan), Poland; ¹⁴Emory Winship Cancer Institute, Atlanta, GA, USA; ¹⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁶Nurix Therapeutics, Inc., San Francisco, CA, USA; ¹⁷St. James's Hospital, Leeds, UK this clinical trial please scan the QR code #### **Background** - The current standard of care for patients with CLL focuses on utilizing the inhibitors of two key signaling pathways: BTK and BCL2. - An unmet need still exists in the CLL treatment landscape - Covalent and non-covalent BTKi resistance mutations are found in more than half of patients who progress on BTKi therapies.^{1,2} - Some mutations in BTK can maintain intact B-cell receptor signaling through a scaffolding function of BTK.3 - The number of patients whose disease is BCL2i refractory and double (BTKi/BCL2i) refractory is growing. 4 - The novel BTK degrader bexobrutideg (NX-5948) is a small molecule degrader that offers an additional treatment modality (Figure 1). Bexobrutideg induces specific degradation of wild-type and mutant forms of BTK by ubiquitination via the cereblon E3 ligase complex and subsequent proteasomal degradation. This mechanism allows bexobrutideg to overcome treatment-emergent BTKi resistance mutations⁵ and disrupt BTK scaffolding.^{3,5} - Here we report updated findings from a Phase 1a trial of bexobrutideg in patients with relapsed/refractory CLL. # Methods - NX-5948-301 is a Phase 1 clinical trial evaluating the safety and efficacy of bexobrutideg in patients with relapsed/refractory B-cell malignancies, including CLL and NHL, in parallel 3+3 dose-escalation then dose-expansion cohorts (Figure 2). - Key eligibility criteria include ≥2 prior therapy lines and ECOG PS 0-1 - Primary: safety/tolerability and identification of a recommended Phase 2 dose. - Secondary: characterization of the pharmacokinetic/pharmacodynamic profile and assessment of preliminary efficacy according to iwCLL criteria. # Results - As of 12 March 2025, 48 patients with CLL/SLL were enrolled in Phase 1 a of the trial and treated at 6 daily oral dose levels - The CLL population comprised patients with multiple prior lines of therapy and high prevalence of baseline mutations (Table 1). - Bexobrutideg was well tolerated across all doses, consistent with previous reports (Table 2). - · There was one treatment-emergent adverse event (TEAE) resulting in drug discontinuation, no dose-limiting toxicities and no - In 47 response-evaluable patients with CLL, ORR was 80.9%; best overall responses included: 1 CR, 37 PR, 7 SD, and 2 PD (Table 3). - Clinical activity was observed regardless of TP53 or PLCG2 mutation status, cBTKi or ncBTKi resistance mutations, or CNS - Bexobrutideg resulted in a decrease in lesion size, as measured by the change from baseline in sum of product diameters (Figure 6). ## Table 1. Patient Demographics and Baseline Disease Characteristics: Phase 1a involvement (Figure 4). Durable responses were observed regardless of prior therapy (Figure 5). Patients could have received multiple prior treatments; bAll patients who received ncBTKi also previously received cBTKi; Data cutoff: 12 Mar 2025 ## Abbreviations AE, adverse event; ATM, ataxia-telangiectasia mutated; BCL2, B-cell lymphoma 2; BCL2i, BCL2 inhibitor; BTK, Bruton's tyrosine kinase; BTKi, BTK inhibitor; CAR-T, chimeric antigen receptor T-cell; cBTKi, covalent BTKi; CI, confidence interval; CIT, chemo/chemo-immunotherapies; CLL, chronic lymphocytic leukemia; CNS, central nervous system; CR, complete response; ECOG PS, Eastern Cooperative Oncology Group performance status; iwCLL, International Workshop on CLL; MFI, mean fluorescence intensity; ncBTKi, non-covalent BTKi; NE, not evaluable; NHL, non-Hodgkin's lymphoma; NOTCH1, neurologic locus notch homolog protein 1; NR, not reached; ORR, objective response rate; PD, progressive disease; PI3Ki, phosphoinositide 3-kinase inhibitor; PLCG2, phospholipase C gamma 2; PR, partial response; PR-L, partial response with rebound lymphocytosis; QD, once daily; SAE, serious adverse event; SD, stable disease; SLL, small lymphocytic lymphoma; SPD, sum of products diameters; **TEAE**, treatment emergent AE are evaluated as disease-evaluable per iwCLL criteria, although they may not be represented in the waterfall plo Table 2. TEAEs in ≥10% of Patients or Grade ≥3 TEAEs or SAEs in >1 Patient: Phase 1a | TEAE s, n (%) | Patients with CLL/SLL (n=48) | | | |---------------------------------------|------------------------------|-----------|---------| | | Any grade | Grade ≥3 | SAEs | | Purpura/contusion ^a | 22 (45.8) | - | - | | Diarrhea | 15 (31.3) | 2 (4.2) | - | | Fatigue ^b | 15 (31.3) | - | - | | Neutropenia ^c | 14 (29.2) | 11 (22.9) | - | | Rash ^d | 13 (27.1) | 1 (2.1) | 1 (2.1) | | Petechiae | 12 (25.0) | - | _ | | Headache | 12 (25.0) | _ | - | | Thrombocytopenia ^e | 11 (22.9) | 1 (2.1) | - | | Anemia | 9 (18.8) | 2 (4.2) | - | | COVID-19 ^f | 9 (18.8) | - | - | | Peripheral edema | 9 (18.8) | - | - | | Cough | 8 (16.7) | - | _ | | Lower respiratory tract infection | 7 (14.6) | 1 (2.1) | 1 (2.1) | | Nausea | 7 (14.6) | - | _ | | Pneumonia ^g | 6 (12.5) | 2 (4.2) | 2 (4.2) | | Arthralgia | 6 (12.5) | - | _ | | Upper respiratory tract infection | 5 (10.4) | - | _ | | Vomiting | 5 (10.4) | 1 (2.1) | _ | | Respiratory syncytial virus infection | 2 (4.2) | 1 (2.1) | 2 (4.2) | "Purpura/contusion includes episodes of contusion or purpura; "Fatigue was transient; 'Aggregate of 'thrombocytopenia' Data cutof and 'platelet count decreased'; 'Aggregate of 'rash' and 'rash maculopapular' and 'rash pustular'; 'Aggregate of 'neutrophil count decreased' or 'neutropenia'; 'Aggregate of 'COVID-19' and 'COVID-19 pneumonia'; 'Aggregate of 'pneumonia' and Data cutoff: 12 Mar 2025 Table 3, Bexobrutideg Overall Response Assessment | CLL response-evaluable patients ^a | Response analysis
(n=47) | |--|-----------------------------| | Objective response rate (ORR), 6 % (95% CI) | 80.9 (66.7–90.9) | | Best response, n (%) | | | CR | 1 (2.1) | | PR | 37 (78.7) | | PR-L | 0 (0.0) | | SD | 7 (14.9) | | PD | 2 (4.3) | | Median follow-up, months: (range)d | 9.0 (1.6–26.1) | ePatients who were treated with bexobrutideg having ≥1 post-baseline disease assessment or documented clinical PD ^bObjective response rate was evaluated using iwCLL criteria and included CR + PR + PR-L unconfirmed responses Kaplan-Meier estimate; dObserved values Data cutoff: 12 Mar 2025 ## **Conclusions** - Bexobrutideg (NX-5948) is a novel small molecule that degrades a well-validated CLL target BTK by utilizing the ubiquitin-proteasome pathway. - In the fully enrolled Phase 1a CLL portion of the NX-5948-301 study as of the 12 March 2025 data cut: - Median follow-up was 9.0 months, and most patients were still on treatment. - Bexobrutideg was well tolerated, consistent with the overall study population and previous disclosures. - Bexobrutideg showed clinical activity in a population of heavily pretreated patients with advanced CLL: · Patients had a median of four prior lines of therapy including, among others, prior cBTKi, ncBTKi, and BCL2i - A high number of patients had BTK, PLCG2, and BCL2 mutations, high-risk molecular features and CNS - involvement. No patient profile was associated with intrinsic resistance to bexobrutideg - Robust and deepening responses were observed with high ORR (80.9%), including one CR: - · Responses were rapid with a median time to first response of 1.87 months. - Multiple conversions were observed from SD to PR, and one conversion from PR to CR. • Of 18 patients treated for more than 12 months, 17 remain on study. One patient is approaching 2.5 years - Enrollment is ongoing in additional Phase 1b sub-population cohorts and pivotal trial(s) initiation is planned later in 2025 ## **Acknowledgements** - · The authors are grateful to the patients and their families who enrolled in this trial. - · The authors would also like to thank: - All NX-5948-301 investigators and study sites in France, Italy, the United States, the United Kingdom, the Netherlands, Poland, Spain, and Switzerland for participating in this clinical research - Nurix employees working on developing bexobrutideg and supporting the clinical trial. • The NX-5948-301 study is sponsored by Nurix Therapeutics, Inc - References - 2. Molica et al. 66th ASH Annual Meeting, Dec 7-10, 2024 3. Montoya et al. Science 2024;383 - 1. Noviski et al. 20th Biennial International Workshop on CLL, Boston, MA. Oct 6–9, 2023 - 4. Hayama and Riches. Onco Targets 2024;17 5. Linton K, et al. Oral presentation at EHA Hybrid Congress; Jun 16, 2024